Для углерода описано несколько кристаллических модификаций. Если не считать фуллеренов, это альфа- и бета-графит, алмаз, лонсдейлит (гексагональный алмаз), чаоит, карбин и углерод(VI).
При нормальных условиях наиболее устойчив альфа-графит (гексагональный). При растирании альфа-графит переходит в бета-графит (ромбоэдрический); при нагревании выше 1025 С происходит обратный переход.
В 1972 г вместе с чаоитом была получена новая аллотропная модификация углерода - гексагональный углерод(VI).
Имеется несколько исскуственных стуктурных форм углерода имеющих большое значение в промышленности. К ним относятся пирографит, сажи, активированные угли, стеклоуглерод, углеродные волокна.
Пирографит или пиролитический графит получают разложением углеродсодержащих материалов на поверхностях нагретых до 1000-2500 С. Если пиролиз протекает в конденсированной фазе, образуется низкотемпературный пирографит (800-1100 С). Пирографит - поликристаллический материал. Ряд электрофизических свойств пирографита обладают выраженной анизотропностью.
Стеклоуглерод и изделия из него могут быть получены при термическом разложении некоторых углеродных материалов, которые при пиролизе, минуя жидкую фазу, превращаются в карбонизованные продукты. Согласно данным рентгеноструктурного анализа, кристаллы стеклоуглерода размером около 10 нм не имеют трехмерного упорядочения и состоят из двух видов углерода: тетраэдрической модификации с расположением атомов как у алмаза, и тригональной с расположением атомов как у графита. Вплоть до температуры 3200 С стеклоуглерод не графитизируется. В некоторых работах указывается, что углеродные атомы с тригональной связью длиной 0,142 нм образуют малые двумерные графитоподобные слои, которые соединены в трехмерную полимерную структуру углеродными атомами с тетраэдрической связью длиной 0,155 нм. Предложено молекулярно-ленточная модель, учитывающая образованием микрофирилл, наличие которых определяет необычные свойства стеклоуглеродов. Тетраэдрические атомы обусловливают высокую твердость стеклоуглерода. Плотность стеклоуглерода 1,5 г/см3, но он значительно прочнее графитов. У стеклоуглерода имеется пористость, он проводит элктрический ток, устойчив во многих агрессивных средах.
Сажи (или технический углерод) являются продуктом неполного сгорания или термического разложения органических веществ. Форма частиц большинства саж близка к сферической. Они состоят из беспорядочно расположенных кристаллитов, включающих 3-5 параллельных плоских решеток атомов углерода. Расстояние между плоскостями составляет 0,345-0,365 нм. Решетки в кристаллите смещены друг относительно друга, что еще больше увеличивает неупорядоченность стуктуры саж. Промежутки между кристаллитами заполнены неорганизованным углеродом, цементирующим структуру в единое целое.
Процесс получения углеродных волокон из органических волокон состоит из двух основных стадий: карбонизации при 900-1500 С и графитизации при 2600-2800 С. В зависимости от типа исходного сырья, углеродные волокнистые материалы могут быть получены в форме нити, жгута, войлока ,ленты, ткани. Волокна делятся на изотропные и анизотропные. Углеродные волокна имеют плотность 1,3-1,7 г/см3, удельную поверхность до 1000 м2/г.
Структура графита: плоскости из шестиугольных колец, расстояние между плоскостями 0,3345 нм, длина связей C-C 0,145 нм.
Кристаллическая решетка графита гексагональная (а = 0,24612 нм, с = 0,67079 нм, z = 4, пространственная группа С6/mmc, теоретическая плотность 2,267 г/см3). Состоит из параллельных слоев (базисных плоскостей), образованных правильными шестиугольниками из атомов углерода. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях (нижнем и верхнем); положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм.
Известна также модификация с ромбоэдрической решеткой (а = 0,3635 нм, α = 39,49°, z = 4, пространств, группа R3m). Положение плоских слоев в ее структуре повторяется не через один слой, как в гексагонональной модификации, а через два.
В природном графите содержание ромбоэдрической структуры доходит до 30%, в искусственно полученных графитах наблюдается только гексагональная. При 2230-3030 °С ромбоэдрический графит полиостью переходит в гексагональный.
Внутри слоя связи между атомами ковалентные, образованы sp2-гибридными орбиталями. Взаимодействие между слоями осуществляются ван-дер-ваальсовыми силами. Для природного (цейлонского) графита межслоевое расстояние при нормальных условиях 0,3354 нм. Энергия связи между слоями гексагононального графита составляет 16,75 Дж/моль (15°С), 15,1 Дж/моль (—134,15°С). Энергия связи С—С в слое 167,6 Дж/моль (1118°С).
Содержание элемента углерода в земной коре 0,14%.
В атмосфере Солнца содержится 0,003 ат%. Изотоп 14C образуется в атмосфере из азота при взаимодействии с нейтронами космического излучения по ядерной реакции 14N(n,p)14C.
Животные. Интратрахеальное введение крысам графита вызывает диффузный и узелковый фиброз легких.
Человек. В производстве графитовых изделий при стаже 10 лет и более нарушение вентиляционной функции легких встречается и у практически здоровых лиц, но чаще у курящих. С возрастанием стажа изменения углубляются, развивается хронический бронхит. Описана графитовая форма антракоза: развитие диффузного и узелкового фиброза легких, эмфиземы, участков некроза, образование каверн с жидкостью, содержащей графит, наступающие при стаже свыше 15 лет, хотя известны и случаи заболевания после 4—6 лет работы. При производстве углеграфитовых электродов отмечается более высокая общая заболеваемость женщин и особенно женской половой сферы (Гладкова, Абдырахманова).
Электронная конфигурация атома углерода 1s22s22p2. Изотоп 14C участвует в процессе круговорота углерода в живых организмах. При этом устанавливается его стационарная концентрация 1,2·10-10% от всего углерода находящегося в организме, что соответствует 15,3 распадов на каждый 1 г углерода. Однако, после гибели организма динамический обмен со средой прекращается и концентрация 14C экспоненциально уменьшается. На этой основе У. Либби разработал метод радиоуглеродного определения возраста образца, за что был удостоен Нобелевской премии по химии в 1960 г. Предел определяемого возраста около 50000 лет, так как к этому времени активность 14C падает до примерно 0,2% начальной и оказывается сравнимой с уровнем фона.
Аллотропная модификация углерода. Тройная точка графит-жидкость-пар находится при Т=4130К и давлении 12 МПа, графит - жидкость - алмаз при Т=4100 К и давлении 12,5 ГПа. Прямой переход графита в алмаз происходит при 3000 К и давлении 11-12 ГПа.
В компактном виде не реагирует с кислотами и щелочами.
От греческого "графо" - пишу.
Под вакуумом смазочные свойства графита исчезают.
При давлении 0,01 мм рт.ст. дает с сульфидом марганца(II) азеотроп с температурой кипения 1375 С.