Main page (Russian)
Search in database (English)
Properties of substance:
copper
Group of substances:
inorganic
Physical appearance:
red cubic metal
Empirical formula (Hill's system for organic substances):
Cu
Structural formula as text:
Cu
Molar/atomic mass: 63.55
Melting point (°C):
1083
Boiling point (°C):
2543
Solubility (g/100 g of solvent):
gallium
: 35 (500°C) [
Ref.
]
lithium molten
: 5 (700°C) [
Ref.
]
mercury
: 0.0032 (18°C) [
Ref.
]
sodium fused
: 0.017 (700°C) [
Ref.
]
water
: 0.0000165 (30°C) [
Ref.
]
Numerical data:
Thermal conductivity (W/m·K): 385.2
Hardness on the Mohs’ scale: 3
Density:
8.96 (20°C, g/cm
3
)
7.998 (1083°C, g/cm
3
)
7.962 (1127°C, g/cm
3
)
7.881 (1227°C, g/cm
3
)
7.799 (1327°C, g/cm
3
)
7.471 (1727°C, g/cm
3
)
7.307 (1927°C, g/cm
3
)
7.225 (2027°C, g/cm
3
)
7.102 (2177°C, g/cm
3
)
Reactions:
[
Ref.1
]
2Cu + 4HI → 2H[CuI
2
] + H
2
[
Ref.1
,
Ref.2
]
5Cu + 4H
2
SO
4
→ 3CuSO
4
+ Cu
2
S + 4H
2
O
[
Ref.1
]
Cu + 2H
2
SO
4
→ CuSO
4
+ SO
2
+ 2H
2
O
[
Ref.1
]
3Cu + 8HNO
3
(30%) + 14H
2
O → 3Cu(NO
3
)
2
* 6H
2
O + 2NO
[
Ref.1
,
Ref.2
]
Cu + 3N
2
O
4
→ Cu(NO
3
)
2
* N
2
O
4
+ 2NO
[
Ref.1
]
Cu + 4HN
3
→ Cu(N
3
)
2
+ NH
4
N
3
+ N
2
[
Ref.1
]
Cu + 2HCl + 3H
2
NCSNH
2
→ [Cu(H
2
NCSNH
2
)
3
]Cl
2
+ H
2
Half-life:
55
29
Cu = 27 ms (β
+
(100%), β
+
p (15%))
56
29
Cu = 93 ms (β
+
(100%), β
+
p (0.4%))
57
29
Cu = 196.3 ms (β
+
(100%))
58
29
Cu = 3.204 s (β
+
(100%))
59
29
Cu = 81.5 s (β
+
(100%))
60
29
Cu = 23.7 min (β
+
(100%))
61
29
Cu = 3.333 h (β
+
(100%))
62
29
Cu = 9.67 min (β
+
(100%))
63
29
Cu = stable ( (isotopic abundance 69,15%))
64
29
Cu = 12.701 h (β
+
(61.5%), β
-
(38.5%))
65
29
Cu = stable ( (isotopic abundance 30,85%))
66
29
Cu = 5.120 min (β
-
(100%))
66m
29
Cu = 600 ns (internal transition (100%))
67
29
Cu = 61.83 h (β
-
(100%))
68
29
Cu = 30.9 s (β
-
(100%))
68m
29
Cu = 3.75 min (internal transition (86%), β
-
(14%))
69
29
Cu = 2.85 min (β
-
(100%))
69m
29
Cu = 360 ns (internal transition (100%))
70
29
Cu = 44.5 s (β
-
(100%))
70m
29
Cu = 33 s (internal transition (48%), β
-
(52%))
70n
29
Cu = 6.6 s (internal transition (6.8%), β
-
(93.2%))
71
29
Cu = 19.4 s (β
-
(100%))
71m
29
Cu = 271 ns (internal transition (100%))
72
29
Cu = 6.63 s (β
-
(100%))
72m
29
Cu = 1.76 μs (internal transition (100%))
73
29
Cu = 4.2 s (β
-
(100%))
74
29
Cu = 1.63 s (β
-
(100%))
75
29
Cu = 1.2238 s (β
-
(100%), β
-
n (3.5%))
75m
29
Cu = 370 ns (internal transition (100%))
75n
29
Cu = 160 ns (internal transition (100%))
76
29
Cu = 637.7 ms (β
-
(100%), β
-
n (7.2%))
76m
29
Cu = 1.27 s (β
-
(100%))
77
29
Cu = 467.9 ms (β
-
(100%), β
-
n (30.3%))
78
29
Cu = 335 ms (β
-
(100%), β
-
n (65%))
79
29
Cu = 220 ms (β
-
(100%), β
-
n (66%))
80
29
Cu = 113.3 ms (β
-
(100%), β
-
n (58.6%))
Vapour pressure (Torr):
0.000000001 (672°C)
0.00000001 (727°C)
0.0000001 (787°C)
0.000001 (857°C)
0.00001 (934°C)
0.0001 (1025°C)
0.001 (1133°C)
0.01 (1264°C)
0.1 (1419°C)
1 (1617°C)
10 (1910°C)
100 (2312°C)
Electrode potential:
Cu
2+
+ 2e
-
→ Cu, E = -0.28 V (acetonitrile, 25°C)
Cu
2+
+ 2e
-
→ Cu, E = -0.14 V (formic acid, 25°C)
Cu
2+
+ e
-
→ Cu
+
, E = 0.153 V (water, 25°C)
Cu
2+
+ 2e
-
→ Cu, E = 0.21 V (ethanol, 25°C)
Cu
2+
+ 2e
-
→ Cu, E = 0.338 V (water, 25°C)
Cu
2+
+ 2e
-
→ Cu, E = 0.43 V (ammonia liquid , 25°C)
Cu
2+
+ 2e
-
→ Cu, E = 0.49 V (methanol, 25°C)
Cu
3+
+ e
-
→ Cu
2+
, E = 2.4 V (water, 25°C)
Viscosity (mPa·s):
3.33 (1100°C)
3.12 (1200°C)
1.96 (1677°C)
Surface tension (mN/m):
1120 (1140°C)
Standard molar enthalpy (heat) of formation Δ
f
H
0
(298.15 K, kJ/mol):
0 (s)
Standard molar Gibbs energy of formation Δ
f
G
0
(298.15 K, kJ/mol):
0 (s)
Standard molar entropy S
0
(298.15 K, J/(mol·K)):
33.15 (s)
Molar heat capacity at constant pressure C
p
(298.15 K, J/(mol·K)):
24.4 (s)
Molar enthalpy (heat) of fusion Δ
fus
H (kJ/mol):
13
Enthalpy (heat) of vaporization Δ
vap
H (kJ/mol):
302
Standard molar enthalpy (heat) of formation Δ
f
H
0
(298.15 K, kJ/mol):
338 (g)
Standard molar entropy S
0
(298.15 K, J/(mol·K)):
166.3 (g)
Molar heat capacity at constant pressure C
p
(298.15 K, J/(mol·K)):
20.8 (g)
References:
Journal of Physical and Chemical Reference Data. - 2010. - Vol. 39, No. 3. - pp. 033105-1 - 033105-8
Солдатенко Е.М., Доронин С.Ю., Чернова Р.К. Химические способы получения наночастиц меди / Бутлеровские сообщения. - 2014. - Т. 37, №1. - pp. 103-113 [Russian]
Герасимов Я.И., Древинг В.П., Еремин Е.Н.. Киселев А.В., Лебедев В.П., Панченков Г.М., Шлыгин А.И. Курс физической химии. - Т.2. - М.: Химия, 1973. - pp. 528 [Russian]
Гурвич Я.А. Справочник молодого аппаратчика-химика. - М.: Химия, 1991. - pp. 51 [Russian]
Девяткин В.В., Ляхова Ю.М. Химия для любознательных, или о чем не узнаешь на уроке. - Ярославль: Академия Холдинг, 2000. - pp. 68 [Russian]
Некрасов Б.В. Основы общей химии. - Т.2. - М.: Химия, 1973. - pp. 244-256 [Russian]
Неорганические синтезы. - Сб. 1. - М.: ИИЛ, 1951. - pp. 10 [Russian]
Подчайнова В.Н., Симонова Л.Н. Медь. - М.: Наука, 1990. - pp. 7-12 [Russian]
Рабинович В.А., Хавин З.Я. Краткий химический справочник. - Л.: Химия, 1977. - pp. 80 [Russian]
Реми Г. Курс неорганической химии. - Т.2. - М., 1966. - pp. 394-403 [Russian]
Свойства элементов. - под общей редакцией Дрица М.Е. - М.: Металлургия, 1985. - pp. 61-71 [Russian]
Справочник по растворимости. - Т.1, Кн.1. - М.-Л.: ИАН СССР, 1961. - pp. 591-592 [Russian]
Фиалков Ю.Я. Не только в воде. - Л.: Химия, 1976. - pp. 89 [Russian]
Химическая энциклопедия. - Т. 3. - М.: Советская энциклопедия, 1992. - pp. 6-8 [Russian]
Химический энциклопедический словарь. - Под ред. Кнунянц И.Л. - М.: Советская энциклопедия, 1983. - pp. 320 [Russian]
What information do you need?
© Collected Ruslan Anatolievich Kiper, burewestnik@mail.ru