Main page (Russian) Search in database (English)

Properties of substance:

copper

Group of substances:

inorganic

Physical appearance:

red cubic metal

Empirical formula (Hill's system for organic substances):

Cu

Structural formula as text:

Cu

Molar/atomic mass: 63.55

Melting point (°C):

1083

Boiling point (°C):

2543

Solubility (g/100 g of solvent):

gallium: 35 (500°C) [Ref.]
lithium molten: 5 (700°C) [Ref.]
mercury: 0.0032 (18°C) [Ref.]
sodium fused: 0.017 (700°C) [Ref.]
water: 0.0000165 (30°C) [Ref.]

Numerical data:

Thermal conductivity (W/m·K): 385.2
Hardness on the Mohs’ scale: 3

Density:

8.96 (20°C, g/cm3)
7.998 (1083°C, g/cm3)
7.962 (1127°C, g/cm3)
7.881 (1227°C, g/cm3)
7.799 (1327°C, g/cm3)
7.471 (1727°C, g/cm3)
7.307 (1927°C, g/cm3)
7.225 (2027°C, g/cm3)
7.102 (2177°C, g/cm3)

Reactions:

  1. [Ref.1]
    2Cu + 4HI → 2H[CuI2] + H2
  2. [Ref.1, Ref.2]
    5Cu + 4H2SO4 → 3CuSO4 + Cu2S + 4H2O
  3. [Ref.1]
    Cu + 2H2SO4 → CuSO4 + SO2 + 2H2O
  4. [Ref.1]
    3Cu + 8HNO3(30%) + 14H2O → 3Cu(NO3)2 * 6H2O + 2NO
  5. [Ref.1, Ref.2]
    Cu + 3N2O4 → Cu(NO3)2 * N2O4 + 2NO
  6. [Ref.1aster]
    Cu + 4HN3 → Cu(N3)2 + NH4N3 + N2
  7. [Ref.1]
    Cu + 2HCl + 3H2NCSNH2 → [Cu(H2NCSNH2)3]Cl2 + H2

Half-life:

5529Cu = 27 ms (β+ (100%), β+p (15%))
5629Cu = 93 ms (β+ (100%), β+p (0.4%))
5729Cu = 196.3 ms (β+ (100%))
5829Cu = 3.204 s (β+ (100%))
5929Cu = 81.5 s (β+ (100%))
6029Cu = 23.7 min (β+ (100%))
6129Cu = 3.333 h (β+ (100%))
6229Cu = 9.67 min (β+ (100%))
6329Cu = stable ( (isotopic abundance 69,15%))
6429Cu = 12.701 h (β+ (61.5%), β- (38.5%))
6529Cu = stable ( (isotopic abundance 30,85%))
6629Cu = 5.120 min (β- (100%))
66m29Cu = 600 ns (internal transition (100%))
6729Cu = 61.83 h (β- (100%))
6829Cu = 30.9 s (β- (100%))
68m29Cu = 3.75 min (internal transition (86%), β- (14%))
6929Cu = 2.85 min (β- (100%))
69m29Cu = 360 ns (internal transition (100%))
7029Cu = 44.5 s (β- (100%))
70m29Cu = 33 s (internal transition (48%), β- (52%))
70n29Cu = 6.6 s (internal transition (6.8%), β- (93.2%))
7129Cu = 19.4 s (β- (100%))
71m29Cu = 271 ns (internal transition (100%))
7229Cu = 6.63 s (β- (100%))
72m29Cu = 1.76 μs (internal transition (100%))
7329Cu = 4.2 s (β- (100%))
7429Cu = 1.63 s (β- (100%))
7529Cu = 1.2238 s (β- (100%), β-n (3.5%))
75m29Cu = 370 ns (internal transition (100%))
75n29Cu = 160 ns (internal transition (100%))
7629Cu = 637.7 ms (β- (100%), β-n (7.2%))
76m29Cu = 1.27 s (β- (100%))
7729Cu = 467.9 ms (β- (100%), β-n (30.3%))
7829Cu = 335 ms (β- (100%), β-n (65%))
7929Cu = 220 ms (β- (100%), β-n (66%))
8029Cu = 113.3 ms (β- (100%), β-n (58.6%))

Vapour pressure (Torr):

0.000000001 (672°C)
0.00000001 (727°C)
0.0000001 (787°C)
0.000001 (857°C)
0.00001 (934°C)
0.0001 (1025°C)
0.001 (1133°C)
0.01 (1264°C)
0.1 (1419°C)
1 (1617°C)
10 (1910°C)
100 (2312°C)

Electrode potential:

Cu2+ + 2e- → Cu, E = -0.28 V (acetonitrile, 25°C)
Cu2+ + 2e- → Cu, E = -0.14 V (formic acid, 25°C)
Cu2+ + e- → Cu+, E = 0.153 V (water, 25°C)
Cu2+ + 2e- → Cu, E = 0.21 V (ethanol, 25°C)
Cu2+ + 2e- → Cu, E = 0.338 V (water, 25°C)
Cu2+ + 2e- → Cu, E = 0.43 V (ammonia liquid , 25°C)
Cu2+ + 2e- → Cu, E = 0.49 V (methanol, 25°C)
Cu3+ + e- → Cu2+, E = 2.4 V (water, 25°C)

Viscosity (mPa·s):

3.33 (1100°C)
3.12 (1200°C)
1.96 (1677°C)

Surface tension (mN/m):

1120 (1140°C)

Standard molar enthalpy (heat) of formation ΔfH0 (298.15 K, kJ/mol):

0 (s)

Standard molar Gibbs energy of formation ΔfG0 (298.15 K, kJ/mol):

0 (s)

Standard molar entropy S0 (298.15 K, J/(mol·K)):

33.15 (s)

Molar heat capacity at constant pressure Cp (298.15 K, J/(mol·K)):

24.4 (s)

Molar enthalpy (heat) of fusion ΔfusH (kJ/mol):

13

Enthalpy (heat) of vaporization ΔvapH (kJ/mol):

302

Standard molar enthalpy (heat) of formation ΔfH0 (298.15 K, kJ/mol):

338 (g)

Standard molar entropy S0 (298.15 K, J/(mol·K)):

166.3 (g)

Molar heat capacity at constant pressure Cp (298.15 K, J/(mol·K)):

20.8 (g)

References:

  1. Journal of Physical and Chemical Reference Data. - 2010. - Vol. 39, No. 3. - pp. 033105-1 - 033105-8
  2. Солдатенко Е.М., Доронин С.Ю., Чернова Р.К. Химические способы получения наночастиц меди / Бутлеровские сообщения. - 2014. - Т. 37, №1. - pp. 103-113 [Russian]
  3. Герасимов Я.И., Древинг В.П., Еремин Е.Н.. Киселев А.В., Лебедев В.П., Панченков Г.М., Шлыгин А.И. Курс физической химии. - Т.2. - М.: Химия, 1973. - pp. 528 [Russian]
  4. Гурвич Я.А. Справочник молодого аппаратчика-химика. - М.: Химия, 1991. - pp. 51 [Russian]
  5. Девяткин В.В., Ляхова Ю.М. Химия для любознательных, или о чем не узнаешь на уроке. - Ярославль: Академия Холдинг, 2000. - pp. 68 [Russian]
  6. Некрасов Б.В. Основы общей химии. - Т.2. - М.: Химия, 1973. - pp. 244-256 [Russian]
  7. Неорганические синтезы. - Сб. 1. - М.: ИИЛ, 1951. - pp. 10 [Russian]
  8. Подчайнова В.Н., Симонова Л.Н. Медь. - М.: Наука, 1990. - pp. 7-12 [Russian]
  9. Рабинович В.А., Хавин З.Я. Краткий химический справочник. - Л.: Химия, 1977. - pp. 80 [Russian]
  10. Реми Г. Курс неорганической химии. - Т.2. - М., 1966. - pp. 394-403 [Russian]
  11. Свойства элементов. - под общей редакцией Дрица М.Е. - М.: Металлургия, 1985. - pp. 61-71 [Russian]
  12. Справочник по растворимости. - Т.1, Кн.1. - М.-Л.: ИАН СССР, 1961. - pp. 591-592 [Russian]
  13. Фиалков Ю.Я. Не только в воде. - Л.: Химия, 1976. - pp. 89 [Russian]
  14. Химическая энциклопедия. - Т. 3. - М.: Советская энциклопедия, 1992. - pp. 6-8 [Russian]
  15. Химический энциклопедический словарь. - Под ред. Кнунянц И.Л. - М.: Советская энциклопедия, 1983. - pp. 320 [Russian]

    What information do you need?




    © Collected Ruslan Anatolievich Kiper, burewestnik@mail.ru